化学科学前沿
|
|
|
|
|
|
锂离子电池固态电解质的研究进展 |
赵俊凯1,2, 杨凯萌1, 郭奥平1, 张策2, 杨晓晶1* |
1.北京师范大学化学学院 北京 100875;
2.中国空间技术研究院 北京 100094 |
|
Research Progress of Solid State Electrolyte for Lithium Ion Battery |
ZHAO Jun-Kai1,2, YANG Kai-Meng1, GUO Ao-Ping1, ZHANG Ce2, YANG Xiao-Jing1* |
1. College of Chemistry, Beijing Normal University, Beijing 100875, China;
2. China Academy of Space Technology, Beijing 100094, China |
|
摘要:和传统电解液相比,固态电解质热稳定性好,电位窗高,力学性能好且对环境友好;更重要地,由固态电解质组成的锂离子电池能量密度比传统锂离子电池更高,因而成为当前研究的热点。综述了几种主要固态电解质,包括无机固体电解质、固态聚合物电解质、凝胶电解质及复合型电解质的优势、研究进展以及面临的问题,并展望了未来固态电解质的发展趋势。
|
|
关键词: 全固态锂离子电池,
无机固态电解质,
聚合物固态电解质,
凝胶电解质,
离子电导率
|
|
通讯作者:
*E-mail:yang.xiaojing@bnu.edu.cn
|
引用本文: |
赵俊凯, 杨凯萌, 郭奥平, 张策, 杨晓晶. 锂离子电池固态电解质的研究进展[J]. 化学教育(中英文), 2022, 43(16): 92-98
|
|
[1] |
Ji Q, Gao X, Zhang Q, et al. Advanced Functional Materials, 2019, 29(43): 1904961
|
[2] |
Cheng Y, Chen Z, Wu H, et al. Advanced Functional Materials, 2016, 26(9): 1338-1346
|
[3] |
Fan E, Li L, Wang Z, et al. Chemical Reviews, 2020, 120(14): 7020-7063
|
[4] |
Tarascon J-M, Armand M. Nature, 2001, 414: 359-367
|
[5] |
Aurbach D, Markovsky B, Salitra G, et al. Journal of Power Sources, 2007, 165(2): 491-499
|
[6] |
中山将伸. 锂电池——基础篇[EB/OL].(2013-06-22)[2022-05-16]. https://mmnakayama.jimdofree.com/study/
|
[7] |
Guan P, Zhang W, Li C, et al. Journal Colloid and Interface Science, 2020, 575: 150-157
|
[8] |
Majeed M K, Saleem A, Wang C, et al. Chemistry-A European Journal, 2020, 26(46): 10544-10549
|
[9] |
Lu W, Xue M, Zhang C. Energy Storage Materials, 2021, 39: 108-129
|
[10] |
Chen W P, Duan H, Shi J L, et al. Journal of American Chemistry Society, 2021, 143(15): 5717-5726
|
[11] |
钜大LARGE. 全固态二次锂离子电池的优点介绍及应用要求[EB/OL].(2021-04-19)[2022-05-16].http://www.juda.cn/news/185089.html
|
[12] |
Li M, Wang C, Chen Z, et al. Chemical Reviews, 2020, 120(14): 6783-6819
|
[13] |
Qin S, Zhu X, Jiang Y, et al. Applied Physics Letters, 2018, 112(11): 113901
|
[14] |
Deng Z, Ou M, Wan J, et al. Chemistry of Materials, 2020, 32(20): 8827-8835
|
[15] |
Rettenwander D, Blaha P, Laskowski R, et al. Chemistry of Materials, 2014, 26(8): 2617-2623
|
[16] |
Geng H, Mei A, Lin Y, et al. Materials Science and Engineering: B, 2009, 164(2): 91-95
|
[17] |
Mei A, Wang X-L, Lan J-L, et al. Electrochimica Acta, 2010, 55(8): 2958-2963
|
[18] |
Goodenough J B, Hong H Y-P, Kafalas J A. Materials Research Bulletin, 1976, 11 (2): 203-220
|
[19] |
Sun Z, Liu L, Lu Y, et al. Journal of the European Ceramic Society, 2019, 39(2-3): 402-408
|
[20] |
Minami T, Tatsumisago M, Wakihara M, et al. Solid State Ionics for Batteries. New York: Springer,2005: 65-66
|
[21] |
Bates J B, Dudney N J, Gruzalski G R, et al. Solid State Ionics, 1992, 53-56: 647-654
|
[22] |
Herbert E G, Tenhaeff W E, Dudney N J, et al. Thin Solid Films, 2011, 520(1): 413-418
|
[23] |
Joo K H, Sohn H J, Vinatier P, et al. Electrochemical and Solid-State Letters, 2004, 7(8): A256
|
[24] |
Xia W, Zhao Y, Zhao F, et al. Chemical Reviews, 2022, 122(3): 3763-3819
|
[25] |
Braga M H, Ferreira J A, Stockhausen V, et al. Journal of Materials Chemistry A, 2014, 2(15): 5470-5480
|
[26] |
Kamaya N, Homma K, Amakawa Y Y, et al. Nature Materials, 2011, 10: 682-686
|
[27] |
Tatsumisago M. Solid State Ionics, 2004, 175(1-4): 13-18
|
[28] |
Seino Y, Ota T, Takada K, et al. Energy & Environmental Science, 2014, 7(2): 627-631
|
[29] |
Kato Y, Hori S, Saito T, et al. Nature Energy, 2016, 1:16030
|
[30] |
Komiya R, Hayashi A, Morimoto H, et al. Solid State Ionics, 2001, 140 (1-2): 83-87
|
[31] |
Kuo P L, Wu C A, Lu C Y, et al. ACS Applied Materials & Interfaces, 2014, 6(5): 3156-3162
|
[32] |
Meye W H. Advanced Materials, 1998, 10: 439-448
|
[33] |
Liao Y H, Li X P, Fu C H, et al. Journal of Power Sources, 2011, 196(4): 2115-2121
|
[34] |
He J, Liu J, Li J, et al. Materials Letters, 2016, 170: 126-129
|
[35] |
Wan Z, Lei D, Yang W, et al. Advanced Functional Materials, 2019, 29(1): 1805301
|
[36] |
Mathew D E, Gopi S, Kathiresan M, et al. Electrochimica Acta, 2019, 319: 189-200
|
[37] |
Wang L, Yan J, Zhong M, et al. ACS Applied Energy Materials, 2022, 5(3): 2873-2880
|
[38] |
Lahiri A, Pulletikurthi G, Shapouri Ghazvini M, et al. The Journal of Physical Chemistry C, 2018, 122(43): 24788-24800
|
[39] |
Miao R, Liu B, Zhu Z, et al. Journal of Power Sources, 2008, 184(2): 420-426
|
[40] |
Zhang M Y, Li M X, Chang Z, et al. Electrochimica Acta, 2017, 245: 752-759
|
[41] |
Pervez S A, Kim G, Vinayan B P, et al. Small, 2020, 16(14): e2000279
|
[42] |
Fu J, Xu Y, Dong L, et al. Chemical Engineering Journal, 2021, 405: 126942
|
[43] |
Yu S, Mertens A, Tempel H, et al. ACS Applied Materials & Interfaces, 2018, 10(26): 22264-22277
|
[44] |
Hatzell K B, Chen X C, Cobb C L, et al. ACS Energy Letters, 2020, 5(3): 922-934
|
[45] |
Wang C, Fu K, Kammampata S P, et al. Chemical Reviews, 2020, 120(10): 4257-4300
|
[46] |
Ban X, Zhang W, Chen N, et al. The Journal of Physical Chemistry C, 2018, 122(18): 9852-9858
|
[47] |
Karasulu B, Emge S P, Groh M F, et al. Journal of the American Chemical Society, 2020, 142(6): 3132-3148
|
[48] |
Li P, Dong X, Li C, et al. Angewandte Chemie-International Edition, 2019, 58(7): 2093-2097
|
[49] |
Yu X, Manthiram A. ACS Applied Energy Materials, 2020, 3(3): 2916-2924
|
[50] |
Kim K J, Balaish M, Wadaguchi M, et al. Advanced Energy Materials, 2020, 11(1): 2002689
|
[51] |
Chen R, Li Q, Yu X, et al. Chemical Reviews, 2020, 120(14): 6820-6877
|
[52] |
郑洪河, 轩小朋, 张虎成, 等. 锂离子电池电解质.北京: 化学工业出版社, 2007:12-13
|
[53] |
Zhu Z, Hong M, Guo D, et al. Journal of the American Chemical Society, 2014, 136(47): 16461-16464
|
|
|
|