Chinese Journal of Chemical Education
 作者投稿
注册
   找回密码    读者中心
专家登录 编委登录 编辑登录 主编登录  
 
快速检索 高级检索
  期刊浏览
化学教育(中英文)  2021, Vol. 42 Issue (8): 105-110    DOI: 10.13884/j.1003-3807hxjy.2019120054
 问题讨论与思考 |
酶促反应动力学教学刍议:米氏方程衍生公式与图像
王志鹏1,2*, 车子良3,4, 马新雨1, Farica Zhuang5, 蒋振雄6,7, 尹晟8, 王鹏9
1.Department of Chemistry, Texas A&M University, College Station, Texas 77840, USA;
2.Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
3.Department of Mathematics, Harvard University, MA 02138, USA;
4.Citadel Securities, LLC; 131 South Dearborn St.Chicago Illinois 60603, USA;
5.Department of Computer Science, Duke University, Durham, NC 27708, USA;
6.Department of Biology, Texas A&M University, Texas 77840, USA;
7.Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA;
8.Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02138, USA;
9.中山大学附属第一医院 烧伤外科 广东广州 510080
Discussion on Teaching Enzyme Kinetics: Plots of Michaelis-Menten Equation Derivatives and Their Figures
WANG Zhipeng1,2*, CHE Zi-Liang3,4, MA Xin-Yu1, ZHUANG Farica5, JIANG Zhen-Xiong6,7, YIN Sheng8, WANG Peng9
1. Department of Chemistry, Texas A&M University, College Station, Texas 77840, USA;
2. Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
3. Department of Mathematics, Harvard University, MA 02138, USA;
4. Citadel Securities, LLC; 131 South Dearborn St. Chicago Illinois 60603, USA;
5. Department of Computer Science, Duke University, Durham, NC 27708, USA;
6. Department of Biology, Texas A&M University, Texas 77840, USA;
7. Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA;
8. Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02138, USA;
9. Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
全文: PDF (1398 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      背景资料
酶促反应动力学教学刍议:米氏方程衍生公式与图像
摘要:许多国内外高校的本科教学缺乏对米氏方程的深入推衍,这对学生了解酶促反应的动态过程及在实际科研工作中的应用是极为不利的。从酶促反应方程出发对米氏方程进行推导,继之采用双倒数法、单倒数法、直接隐函数法、间接隐函数法以及积分法对米氏方程进行线性化,得到适用于不同情况的衍生方程。从数学和酶学角度出发指出了不同方程的优势和缺点,并针对其缺陷提出了若干解决方案以及在实际应用过程中的注意事项。希对高校中有志于科研事业的相关专业的教师学生有所助益。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词: 米氏方程米氏常数酶动力学线性化    
    
通讯作者: *E-mail: wzpchem1991@gmail.com   
引用本文:   
王志鹏, 车子良, 马新雨, Farica Zhuang, 蒋振雄, 尹晟, 王鹏. 酶促反应动力学教学刍议:米氏方程衍生公式与图像[J]. 化学教育(中英文), 2021, 42(8): 105-110

京ICP备05007538号  京公网安备11010802010741号
版权所有 © 《化学教育(中英文)》编辑部
地址:北京市海淀区 新街口外大街19号 北京师范大学化学楼217室
邮编:100875 电话:86-010-58807875 E-mail:hxjy-jce@263.net
技术支持: 北京玛格泰克科技发展有限公司