化学·生活·社会
|
二氧化碳刺激响应的荧光传感器*
陆奕瑾, 袁金颖**
清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
Fluorescent Sensors Based on CO2 -Stimuli Responsive Polymer
LU Yi-Jin, YUAN Jin-Ying**
Key Laboratory of Organic Optoelectronics and Molecular Engineering of Minstry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
摘要: CO2 刺激响应聚合物作为一种智能刺激响应材料,因其在可逆的调控过程中通常只涉及CO2 气体的通入和排出而具有广泛的应用前景。CO2 荧光传感器是将CO2 的浓度变化转化为可检测到的荧光信号,可实现对CO2 浓度的实时监测和可逆调控,也有助于我国如期实现2030年前碳达峰和2060年前碳中和的生态文明建设目标。本文简要介绍CO2 刺激响应物质的基本原理和常见分类方式,阐述该类物质在构筑荧光传感器方面的妙用,围绕响应灵敏性、响应速率、循环使用性和抗干扰性等传感性能指标的研究成果进行讨论。最后对CO2 刺激响应荧光传感器的改进方向和应用前景进行了展望。
关键词: CO2 刺激响应 ,
荧光传感器 ,
CO2 浓度
基金资助: * 国家自然科学基金面上项目(21871162)
通讯作者:
** E-mail:yuanjy@mail.tsinghua.edu.cn
引用本文:
陆奕瑾, 袁金颖. 二氧化碳刺激响应的荧光传感器* [J]. 化学教育(中英文), 2022, 43(4): 1-7
[1]
Feng A C, Yan Q, Yuan J Y. Progress in Chemistry, 2012, 24(10):1995-2003
[2]
Liu H, Lin S, Feng Y, et al. Polymer Chemistry, 2017, 8(1):12-23
[3]
Quek J Y, Roth P J, Evans R A, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2013, 51(2):394-404
[4]
Schattling P, Pollmann I, Theato P. Reactive & Functional Polymers, 2014, 75:16-21
[5]
Yan Q, Zhao Y. J. Am. Chem. Soc., 2013, 135(44):16300-16303
[6]
Liu H, Zhao Y, Dreiss C A, et al. Soft Matter, 2014, 10(34):6387-6391
[7]
Yan Q, Zhou R, Fu C, et al. Angew. Chem. Int. Ed. Engl., 2011, 50(21):4923-4927
[8]
Fowler C I, Jessop P G, Cunningham M F. Macromolecules, 2012, 45(7):2955-2962
[9]
Guo Z, Feng Y, Wang Y, et al. Chemical Communications, 2011, 47(33):9348-9350
[10]
Su X, Jessop P G, Cunningham M F. Macromolecules, 2012, 45(2):666-670
[11]
Han D, Boissiere O, Kumar S, et al. Macromolecules, 2012, 45(18):7440-7445
[12]
Fischer V, Landfester K, Muñoz-Espí R. ACS Macro Letters, 2012, 1(12):1371-1374
[13]
Jessop P G, Heldebrant D J, Li X W, et al. Nature, 2005, 436(7054):1102
[14]
Liu Y, Jessop P G, Cunningham M, et al. Science, 2006, 313(5789):958-960
[15]
Phan L, Jessop P G. Green Chemistry, 2009, 11(3):307-308
[16]
Darabi A, Jessop P G, Cunningham M F. Chem. Soc. Rev., 2016, 45(15):4391-4436
[17]
Kumar S, Tong X, Dory Y L, et al. Chem. Commun. (Camb), 2013, 49(1):90-92
[18]
Guo J, Wang N, Wu J, et al. J. Mater. Chem. B, 2014, 2(4):437-442
[19]
Che H, Huo M, Peng L, et al. Angew. Chem. Int. Ed. Engl., 2015, 54(31):8934-8938
[20]
Zhang Q, Yu G, Wang W J, et al. Macromol. Rapid Commun., 2012, 33(10):916-921
[21]
Mihara M, Jessop P, Cunningham M. Macromolecules, 2011, 44(10):3688-3693
[22]
Nagai D, Suzuki A, Kuribayashi T. Macromol. Rapid Commun., 2011, 32(4):404-410
[23]
Feng A, Zhan C, Yan Q, et al. Chem. Commun. (Camb), 2014, 50(64):8958-8961
[24]
Yan Q, Wang J, Yin Y, et al. Angew. Chem. Int. Ed. Engl., 2013, 52(19):5070-5073
[25]
Zhou H, Zhang W-Z, Wang Y-M, et al. Macromolecules, 2009, 42(15):5419-5421
[26]
Kainz J, Werz P D L, Troll C, et al. RSC Advances, 2015, 5(13):9556-9560
[27]
Ochiai B, Yokota K, Fujii A, et al. Macromolecules, 2008, 41(4):1229-1236
[28]
Xu L Q, Zhang B, Sun M, et al. J. Mater. Chem. A, 2013, 1(4):1207-1212
[29]
Zhang Q M, Ahiabu A, Gao Y, et al. Journal of Materials Chemistry C, 2015, 3(3):495-498
[30]
Ma Y, Promthaveepong K, Li N. Analytical Chemistry, 2016, 88(16):8289-8293
[31]
Liu Y, Tang Y H, Barashkov N N, et al. Journal of the American Chemical Society, 2010, 132(40):13951-13953
[32]
Zhang D, Fan Y, Chen H, et al. Angew. Chem. Int. Ed. Engl., 2019, 58(30):10260-10265
[33]
Qiu L, Zhang H, Wang B, et al. ACS Appl. Mater. Interfaces, 2020, 12(1):1348-1358
[34]
Gao C, Lu S, Liu M, et al. Nanoscale, 2016, 8(2):1140-1146
[35]
Xu L, Ren N, Pang J, et al. Polym. Chem., 2017, 8(40):6283-6288
[36]
Wei H, Zhang J, Shi N, et al. Chem. Sci., 2015, 6(12):7201-7205
[37]
Yu B, Zhao Y. Polymer Chemistry, 2017, 8(28):4132-4139
[38]
Mabire A B, Brouard Q, Pitto-Barry A, et al. Polymer Chemistry, 2016, 7(38):5943-5948
[39]
Wang Z, Ma H, Zhai T-L, et al. Advanced Science, 2018, 5(7):1800141
[40]
Wang Y, Huo M, Zeng M, et al. Chinese Journal of Polymer Science, 2018, 36(12):1321-1327