化学·生活·社会
|
|
|
|
|
|
绣球花的变色机理及化学模型 |
程福英, 王瑶, 伍晓春* |
四川师范大学化学与材料科学学院 四川成都 610066 |
|
Chemical Model and Mechanism of Hydrangea Macrophylla Color-Changing |
CHENG Fu-Ying, WANG Yao, WU Xiao-Chun* |
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China |
|
摘要:绣球花品种繁多,花型饱满,是深受大众喜爱的园林景观植物。有趣的是,绣球花萼片中仅含一种花色苷——飞燕草素-3-葡萄糖苷,却能产生从红到蓝的系列颜色变化。研究发现,引起绣球花萼片颜色变化的密钥为Al3+,萼片中的共色素也对花色调控有重要作用。为探究绣球花萼片颜色从红到蓝的变化机理,生物化学家们提出了花色变化的化学模型,并通过分析仪器成功测定了引起萼片蓝化的金属络合物的结构。
|
|
关键词: 绣球花,
花色变化,
飞燕草素-3-葡萄糖苷,
铝离子,
蓝化机理,
金属络合物
|
|
通讯作者:
*E-mail:wuxiaochun@sicnu.edu.cn
|
引用本文: |
程福英, 王瑶, 伍晓春. 绣球花的变色机理及化学模型[J]. 化学教育(中英文), 2022, 43(8): 14-20
|
|
[1] |
蔡能, 杨玉勇. 中国花卉园艺, 2009(22):20-22
|
[2] |
刘向标, 段江燕. 陕西农业科学, 2013, 59(1):104-109
|
[3] |
贾洪菊. 八仙花红色素分子结构分析及在压花上应用. 哈尔滨: 东北林业大学硕士学位论文, 2011
|
[4] |
Lawrence W J C, Price J R, Robinson G M, et al. Biochemical Journal, 1938, 32(10):1661-1667
|
[5] |
王成喆. 化学教育, 2005,26(4):7-8
|
[6] |
于晓楠, 张启翔. 林业科学, 2002(3):147-153
|
[7] |
Jurd L, Asen S. Phytochemistry, 1966, 5(6):1263-1271
|
[8] |
Takeda K, Kubota R, Yagioka C. Phytochemistry, 1985, 24(6):1207-1209
|
[9] |
Toyama-Kato Y, Yoshida K, Fujimori E, et al. Biochemical Engineering Journal, 2003, 14(3):237-241
|
[10] |
Asen S, Stuart N W, Siegelman H W. Proceedings of American Society for Horticultural Science, 1959, 73: 495-502
|
[11] |
Chenery E M. Annals of Botany, 1948, 12(2):121-136
|
[12] |
Yamamoto Y. Plant Physiology, 2001, 125(1):199-208
|
[13] |
Hotta H, Wang Q, Fukuda M, et al. Analytical Sciences, 2008, 24(6):795-798
|
[14] |
Yoshida K, Yuki T K, Kiyoshi K, et al. Plant & Cell Physiology, 2003,43(3):262-268
|
[15] |
Schreiber H D, Wade S E, Mayhew K M, et al. Journal of Environment Biology,2011, 29(3):131-136
|
[16] |
Schreiber H D, Jones A H, Lariviere C M, et al. Biometals, 2011, 24(6):1005-1015
|
[17] |
Kondo T, Yoshida K, Nakagawa A, et al. Nature, 1992, 358:515-518
|
[18] |
Robinson R, Robinson G M. Journal of the American Chemical Society, 1939, 61(6): 1605-1606
|
[19] |
Hayashi K, Abe Y. Miscellaneous Reports of the Research Institute for Natural Resources, 1953, 29: 1-8
|
[20] |
Asen S, Siegelman H W, Stuart N W. Proceedings of American Society for Horticultural Science,1957, 69: 561-569
|
[21] |
Takeda K, Kariuda M, Itoi H. Phytochemistry, 1985, 24(10): 2251-2254
|
[22] |
Kondo T, Toyama-Kato Y, Yoshida K. Tetrahedron Letters, 2005, 46(39):6645-6649
|
[23] |
Yoshida K, Toyama-Kato Y, Kondo T. Heterocycles, 2007, 72(1):239-254
|
[24] |
Moncada M C, Moura S, M.João Melo, et al. Inorganica Chimica Acta, 2003, 356:51-61
|
[25] |
Kondo T, Yoshida K, Nakagawa A, et al. Nature, 1992, 358:515-518
|
[26] |
Yoshida K, Mori M, Kondo T. Cheminform, 2009, 26(44):884-915
|
[27] |
Schreiber H D, Swink A M, Godsey T D. Journal of Inorganic Biochemistry, 2010, 104(7):732-739
|
[28] |
Mori M, Kondo T, Yoshida K. Phytochemistry, 2008, 69(18):3151-3158
|
[29] |
Oyama K I, Yamada T, Ito D, et al. Journal of Agricultural and Food Chemistry, 2015:7630-7635
|
[30] |
Ito D, Shinkai Y, Kato Y, et al. Bioscience Biotechnology and Biochemistry, 2009, 73(5):1054-1059
|
[31] |
Ito D, Oyama K, Yoshida K. Molecules, 2018, 23(6):1424
|
[32] |
Ito D, Aoki D, Fukushima K, et al. Scientific Reports, 2019, 9(1):5450-5459
|
|
|
|