理论教学
|
利用计算化学方法从HOMO轨道能量判断路易斯碱的强弱*
陈欣宇, 李子昊** , 董立坤, 蒋燮阳, 张书宇**
上海交通大学化学化工学院 上海 200240
Using Computational Chemistry to Compare the Strength of Lewis Bases from HOMO Orbital Energy
CHEN Xin-Yu, LI Zi-Hao** , DONG Li-Kun, JIANG Xie-Yang, ZHANG Shu-Yu**
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
摘要: 以经典路易斯酸碱性比较问题为切入点,以羰基化合物为实例,从原理上探讨了一种通过计算分子 HOMO 轨道能量判断路易斯酸碱性的方法,帮助学生比较和分析路易斯碱的相对碱性大小,并对学生表现进行了有效评估。旨在通过此过程引导本科生借助现代化研究分析方法主动思考和加深对化学基础概念的理解,进而激发学生的学习兴趣。
关键词: 有机化学 ,
羰基化合物 ,
计算化学 ,
相对碱性 ,
HOMO ,
轨道的能量
基金资助: *上海交通大学教学发展基金(CTLD 22J0077)
通讯作者:
**E-mail: lizihaosjtu@sjtu.edu.cn; zhangsy16@sjtu.edu.cn
引用本文:
陈欣宇, 李子昊, 董立坤, 蒋燮阳, 张书宇. 利用计算化学方法从HOMO轨道能量判断路易斯碱的强弱* [J]. 化学教育(中英文), 2024, 45(14): 29-35
[1]
Muller P. Pure and Applied Chemistry, 1994, 66 (5): 1077-1184
[2]
陈虹锦,谢少艾,张卫. 无机与分析化学. 2版. 北京:科学出版社, 2008:247-251
[3]
吕萍,王彦广. 中级有机化学:反应与机理. 2版.北京: 高等教育出版社, 2015:20
[4]
Gutmann V. Angew Chem. Int. Ed., 1970, 9 (11): 843-859
[5]
Gutmann V. Coord Chem. Rev., 1976, 18 (2): 225-255
[6]
Maria P C, Gal J-F. J. Phys. Chem., 1985, 89 (7): 1296-1304
[7]
Mayer U, Gutmann V, Gerger W. Monatshefte fur Chemie, 1975, 106 (6): 1235-1257
[8]
席婵娟,邓耿. 物理有机化学:结构与原理.北京: 高等教育出版社, 2017:248-249
[9]
Anslyn E V, Dougherty D A. Modern Physical Organic Chemistry. University Science Books, 2006: 287-306
[10]
Bradley G D, Gerrans G C. J. Chem. Educ., 1973, 50 (7): 463
[11]
Ian Fleming. Molecular orbitals and organic chemical reactions. Chichester: John Wiley & Sons, Ltd., 2009: 97-102
[12]
Ralph G P. J. Am. Chem. Soc., 1963, 85 (22): 3533-3539
[13]
Alan E R, Frank W. J. Chem. Phys., 1985, 83 (4): 1736-1740
[14]
Hunt I R, Rauk A, Keay B A. J. Org. Chem., 1996, 61 (2): 751-757
[15]
David P C, Provi M M. Chemistry Education Research and Practice, 2011, 12 (1): 29-39
[16]
Clauss A D, Nelsen S F. J. Chem. Educ., 2009, 86 (8): 955-958
[17]
Esselman B J, Hill N J. J. Chem. Educ., 2015, 92 (4): 660-663
[18]
Esselman B J, Hill N J. J. Chem. Educ., 2016, 93 (5): 932-936
[19]
Esselman B J, Hofstetter H, Ellison A J, et al. J. Chem. Educ., 2020, 97 (8): 2280-2285
[20]
Carrasco N, González N F, Rezende M C. Tetrahedron, 2002, 58 (25): 5141-5145
[21]
Ivey M M, Slaughter J, Smith Jr R, et al. Chem. Educator, 2021, 26: 14-22
[22]
Zeegers P. J. Chem. Educ., 1997, 74 (3): 299-301
[23]
Florbela P, Xiao K X, Latino D A. R S, et al. J. Chem. Inf. Model., 2017, 57 (1): 11-21
[24]
Zhao Y, Truhlar D G. Acc. Chem. Res., 2008, 41 (2): 157-167
[25]
Hariharan P C, Pople J A. Theor. Chem. Acta, 1973, 28 (3): 213-222
[26]
Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2009, 113 (18): 6378-6396
[27]
Patai S. The Carbonyl Group (1966).New York: John Wiley & Sons, Ltd., 1966: 429-433
[28]
Loudon M. Organic Chemistry. Roberts and Company Publishers, Purdue University, 2008: 1123
[29]
Fu X, Hao Y, Bai H-Y, et al. Org. Lett., 2021, 23 (1): 25-30
[30]
Zhou J, Li Z-H, Pan J-L, et al. Tetrahedron Letters, 2021, 69: 152979
[31]
Qiu X-Y, Li Z-H, Zhou J, et al. ACS Catalysis, 2022, 12 (13): 7511-7516
[32]
Dong L-K, Li Z-H, Zhang S-Y. Journal of Chemical Education, 2021, 98 (10): 3226-3236
[33]
Li Q-Z, Li Z-H, Kang J-C, et al. Chem Catalysis, 2022, DOI: 10.1016/j.checat.2022.09.020
[34]
Liu R-X, Xiong F, Chen C, et al. Journal of Chemical Education, 2023, 100: 689-696
[35]
Xiong F, Liu R-X, Fan X-X, et al. Journal of Chemical Education, 2023, 100: 4686-4695