|
化学·生活·社会
|
|
|
|
|
|
| 非金属元素砷的同素异形体研究进展* |
| 马艺, 魏灵灵, 李淑妮, 高胜利, 王长号** |
| 陕西师范大学化学化工学院 陕西西安 710119 |
|
| Research Progress of Allotropes of Non-Metallic Element Arsenic |
| MA Yi, WEI Ling-Ling, LI Shu-Ni, GAO Sheng-Li, WANG Chang-Hao** |
| School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119,China |
|
|
摘要:依据砷化学的快速发展,分别对砷元素3种典型单质(灰砷、黑砷、黄砷)以及多种新型结构的砷同素异形体的制备、结构、化学特性及应用等方面进行综合介绍,为砷元素的教学及科研提供全新且丰富的素材。
|
|
| 关键词: 同素异形体,
砷,
结构,
性质,
应用
|
|
|
| 基金资助:*陕西高等教育教学改革项目(19BZ014);陕西师范大学教学改革项目(19JG31) |
|
通讯作者:
**E-mail:changhaowang@snnu.edu.cn
|
| 引用本文: |
|
马艺, 魏灵灵, 李淑妮, 高胜利, 王长号. 非金属元素砷的同素异形体研究进展*[J]. 化学教育(中英文), 2021, 42(8): 5-16
|
|
| [1] |
项斯芬, 严宣申, 曹庭礼, 等. 无机化学丛书·氮、磷、砷分族. 北京: 科学出版社, 1995: 374-380
|
| [2] |
杨奇, 乔成芳, 崔孝炜, 等. 化学教育(中英文), 2017, 38 (22): 12-31
|
| [3] |
Gobbi M, Orgiu E, Samori P. Adv. Mater., 2018, 30 (18): 1706103
|
| [4] |
Novoselov K S, Mishchenko A, Carvalho A, et al. Science, 2016, 353 (6298): aac9439
|
| [5] |
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, et al. Nanoscale, 2011, 3 (1): 20-30
|
| [6] |
Huang C S, Li Y J, Wang N, et al. Chem. Rev., 2018, 118 (16): 7744-7803
|
| [7] |
Pumera M, Sofer Z. Adv. Mater., 2017, 29 (21): 1605299
|
| [8] |
凌永乐. 化学元素的发现. 3版. 北京: 商务印书馆, 2014: 41-42
|
| [9] |
宋天佑, 徐家宁, 程功臻, 等. 无机化学(下册). 3版. 北京: 高等教育出版社, 2015: 579
|
| [10] |
Rosenblatt G M, Lee P K. J. Chem. Phys., 1986, 49: 2995-3066
|
| [11] |
Gokcen N A. Bull. Alloy Phase Diagr., 1989, 10: 11-22
|
| [12] |
Kalendarev R I, Sazonov A I, Rodionov A N, et al. Mater. Res. Bull., 1984, 19: 11-15
|
| [13] |
Stöhr H. Zeitschrift fur Anorganische und Allgemeine Chemie, 1939, 242: 138-144
|
| [14] |
Greaves G N, Elliott S R, Davis E A. Adv. Phys., 1979, 28: 49-141
|
| [15] |
宣昭林, 戎刘, 李艳杰. 中国地方病防治杂志, 2004, 19 (4): 162-163
|
| [16] |
Wen S P, Zhu X S. Talanta, 2018, 181: 265-270
|
| [17] |
Leal P M, Alonso E V, Guerrero M M L, et al. Talanta, 2018, 184: 251-259
|
| [18] |
Chen S Z, Zhan X L, Lu D B, et al. Anal. Chim. Acta., 2009, 634 (2): 192-196
|
| [19] |
Chen D H, Huang C Z, He M, et al. J. Hazard Mater., 2009, 164 (2/3): 1146-1151
|
| [20] |
Li P, Zhang X Q, Chen Y J, et al. RSC Adv., 2014, 4 (90): 49421-49428
|
| [21] |
Ma J P, Jiang L H, Wu G G, et al. J. Chromatogr. A, 2016, 1466: 12-20
|
| [22] |
Huang C Z, Xie W, Li X, et al. Microchim. Acta., 2011, 173 (1/2): 165-172
|
| [23] |
Ma J P, Lu W H, Chen L X. Curr. Anal. Chem., 2012, 8 (1): 78-90
|
| [24] |
Zounr R A, Tuzen M, Khuhawar M Y. J. Mol. Liq., 2017, 242: 441-446
|
| [25] |
位晨希, 马继平, 吴阁格, 等. 青岛理工大学学报, 2019, 40 (3): 80-87
|
| [26] |
Liu W, Hu J L, Yang H X. Chinese Journal of Analysis Laboratory, 2014, 33 (4): 462-465
|
| [27] |
Jia X Y, Gong D R, Wang J N. Talanta, 2016, 160: 437-443
|
| [28] |
郑雅杰, 崔涛, 彭映林. 中国有色金属学报, 2012, 22 (7): 2103-2108
|
| [29] |
王小平, 周振联. 环境工程, 2003, 21 (5): 46-48
|
| [30] |
欧阳通. 环境科学, 2004, 25 (6): 43-47
|
| [31] |
姜浩, 廖立兵, 王素萍. 地球化学, 2002, 31 (6): 593-601
|
| [32] |
吴水波. 混凝-微滤工艺的饮用水除砷研究. 天津: 天津大学硕士学位论文, 2007
|
| [33] |
樊荣涛, 闫惠珍, 岳银玲. 中国卫生检验, 2005, 15 (9): 1128-1129
|
| [34] |
张斐, 王欣. 现代盐化工, 2019(4): 9-10
|
| [35] |
Kou L Z, Ma Y D, Tan X, et al. J. Phys. Chem. C, 2015, 119 (12): 6918-6922
|
| [36] |
Greenwood N N, Earnshaw A. Chemistry of the Elements 2nd ed. Oxford: Butterworth-Heinemann, 1997: 551
|
| [37] |
Mardanya S, Thakur V K, Bhowmick S, et al. Phys. Rev. B, 2016, 94 (3): 035423
|
| [38] |
一机部仪表材料研究所技术情报室. 仪表材料, 1971(4): 16-23
|
| [39] |
侯汉娜, 陈甜甜. 环境保护科学, 2014, 40 (6): 42-46
|
| [40] |
石黑三郎. 电器学会杂志, 1970, 90 (4): 561-565
|
| [41] |
岸田元良. 化学工业, 1966(8): 769-774
|
| [42] |
姚元芝. 知识介绍, 1999(4): 24-25
|
| [43] |
高胜利, 杨奇. 化学元素新论. 北京: 科学出版社, 2019: 473-474
|
| [44] |
胡德元. 改性活性炭吸附去除氟硅酸中砷的研究. 贵阳: 贵州大学硕士学位论文, 2008
|
| [45] |
Zhao L X, Xu Q N, Wang X M, et al. Phys. Rev. B, 2017, 95 (11):115119
|
| [46] |
Hu Y, Qi Z H, Lu J Y, et al. Chem. Mater., 2019, 31 (12): 4524-4535
|
| [47] |
Sturala J, Sofer Z, Pumera M. Npg. Asia. Mater., 2019, 11: 42
|
| [48] |
Antonatos N, Mazanek V, Lazar P, et al. Nanoscale Adv., 2020, 2 (3): 1282-1289
|
| [49] |
Seidl M, Balazs G, Scheer M. Chem. Rev., 2019, 119 (14): 8406-8434
|
| [50] |
Chen Y B, Chen C Y, Kealhofer R, et al. Adv. Mater., 2018, 30 (30):1800754
|
| [51] |
Pušelj M, Ban Z, Grdenic D. Zeitschrift fur Anorganische und Allgemeine Chemie, 1977, 437: 289-292
|
| [52] |
Osters O, Nilges T, Bachhuber F, et al. Angew Chem. Int. Edit., 2012, 51 (12): 2994-2997
|
| [53] |
Smith P M, Leadbetter A J, Apling A J. Philos.Mag., 1975, 31: 57-64
|
| [54] |
Krebs H, Holz W, Worms K H. Chem. Ber., 1957, 90: 1031-1037
|
| [55] |
Krebs H. Angew. Chem. Int. Edit., 1953, 65: 293-299
|
| [56] |
Antonatos N, Luxa J, Sturala J, et al. Nanoscale, 2020, 12 (9): 5397-5401
|
| [57] |
Clark A H. Mineral. Mag., 1970, 37: 2
|
| [58] |
Li R P, Han N N, Cheng Y C, et al. J. Phys-Condens. Mat., 2019, 31 (50): 505501
|
| [59] |
Gao C F, Li R P, Zhong M Z, et al. J. Phys. Chem. Lett., 2020, 11 (1): 93-98
|
| [60] |
Kandemir A, Iyikanat F, Sahin H. J. Mater. Chem. C, 2019, 7 (5): 1228-1236
|
| [61] |
Zhong M Z, Xia Q L, Pan L F, et al. Adv. Funct. Mater., 2018, 28 (43): 1802581
|
| [62] |
Shen S Y, Gan Y, Xue X X, et al. Appl. Phys. Express, 2019, 12 (7): 075502
|
| [63] |
Akgenc B. J. Mater. Sci., 2019, 54 (13): 9543-9552
|
| [64] |
Schwarzmaier C, Sierka M, Scheer M. Angew. Chem.Int. Edit., 2013, 52 (3): 858-861
|
| [65] |
Schwarzmaier C, Schindler A, Heindl C, et al. Angew. Chem. Int. Edit., 2013, 52 (41): 10896-10899
|
| [66] |
Seitz A E, Hippauf F, Kremer W, et al. Nat. Commun., 2018, 9: 361
|
| [67] |
Morino Y, Ukaji T, Ito T. B. Chem. Soc. Jpn., 1966, 39: 64-71
|
| [68] |
Bettendorff A. Justus Liebigs Annalen der Chemie, 1867, 144: 110-114
|
| [69] |
Scherer O J, Sitzmann H, Wolmershäuser G. J. Organomet. Chem., 1986, 309: 77-86
|
| [70] |
Tan R P, Comerlato N M, Powell D R, et al. Angew. Chem. Int. Edit., 1992, 31 (9): 1217-1218
|
| [71] |
Seitz A E, Eckhardt M, Sen S S, et al. Angew. Chem. Int. Edit., 2017, 56 (23): 6655-6659
|
| [72] |
Heinl S, Balazs G, Stauber A, et al. Angew. Chem. Int. Edit., 2016, 55 (50): 15524-15527
|
| [73] |
Curley J J, Piro N A, Cummins C C. Inorg. Chem., 2009, 48 (20): 9599-9601
|
| [74] |
Schwarzmaier C, Noor A, Glatz G, et al. Angew. Chem. Int. Edit., 2011, 50 (32): 7283-7286
|
| [75] |
Scherer O J, Blath C, Wolmershäuser G. J. Organomet. Chem., 1990, 387: C21-C24
|
| [76] |
Schwarzmaier C, Timoshkin A Y, Balazs G, et al. Angew. Chem. Int. Edit., 2014, 53 (34): 9077-9081
|
| [77] |
Heinl S, Timoshkin A Y, Muller J, et al. Chem. Commun., 2018, 54 (18): 2244-2247
|
| [78] |
Di Vaira M, Midollini S, Sacconi L. J. Am. Chem. Soc., 1979, 101: 1757-1763
|
| [79] |
Scherer O J, Pfeiffer K, Heckmann G, et al. J. Organomet. Chem., 1992, 425: 141-149
|
| [80] |
Grassl C, Bodensteiner M, Zabel M, et al. Chem. Sci., 2015, 6 (2): 1379-1382
|
| [81] |
Scherer O J, Braun J, Wolmershäuser G. Chem. Ber., 1990, 123: 471-475
|
| [82] |
Scherer O J, Braun J, Walther P, et al. Chem. Ber., 1992, 125: 2661-2665
|
| [83] |
Spitzer F, Sierka M, Latronico M, et al. Angew. Chem. Int. Edit., 2015, 54 (14): 4392-4396
|
| [84] |
Schmidt M, Seitz A E, Eckhardt M, et al. J. Am. Chem. Soc., 2017, 139 (40): 13981-13984
|
| [85] |
Turbervill R S P, Goicoechea J M. Chem. Commun., 2012, 48 (49): 6100-6102
|
| [86] |
Hinz A, Goicoechea J M. Angew. Chem. Int. Edit., 2016, 55 (50): 15515-15519
|
| [87] |
Karttunen A J, Tanskanen J T, Linnolahti M, et al. J. Phys. Chem. C, 2009, 113 (28): 12220-12224
|
| [88] |
Hart M, Chen J, Michaelides A, et al. Angew. Chem. Int. Edit., 2018, 57 (36): 11649-11653
|
| [89] |
Zhang S L, Yan Z, Li Y F, et al. Angew. Chem. Int. Edit., 2015, 54 (10): 3112-3115
|
| [90] |
Luo K, Chen S Y, Duan C G. Sci China. Phys. Mech., 2015, 58 (8): 087301
|
| [91] |
Zhang B F, Zhang H, Lin J H, et al. Phys. Chem. Chem. Phys., 2018, 20 (48): 30257-30266
|
| [92] |
Li P, Luo W D. Sci. Rep-Uk, 2016, 6: 25423
|
| [93] |
Kong X R, Li L Y, Leenaerts O, et al. Phys. Rev. B, 2017, 96 (3): 035123
|
| [94] |
Jamdagni P, Thakur A, Kumar A, et al. Phys. Chem. Chem. Phys., 2018, 20 (47): 29939-29950
|
| [95] |
Baruah T, Pederson M R, Zope R R, et al. Chem.Phys. Lett., 2004, 387: 476-480
|
| [96] |
Karttunen A J, Linnolahti M, Pakkanen T A. Chemphyschem, 2007, 8 (16): 2373-2378
|
| [97] |
Karttunen A J, Linnolahti M, Pakkanen T A. Theor. Chem. Acc., 2011, 129 (3-5): 413-422
|
| [1] |
项斯芬, 严宣申, 曹庭礼, 等. 无机化学丛书·氮、磷、砷分族. 北京: 科学出版社, 1995: 374-380
|
| [2] |
杨奇, 乔成芳, 崔孝炜, 等. 化学教育(中英文), 2017, 38 (22): 12-31
|
| [3] |
Gobbi M, Orgiu E, Samori P. Adv. Mater., 2018, 30 (18): 1706103
|
| [4] |
Novoselov K S, Mishchenko A, Carvalho A, et al. Science, 2016, 353 (6298): aac9439
|
| [5] |
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, et al. Nanoscale, 2011, 3 (1): 20-30
|
| [6] |
Huang C S, Li Y J, Wang N, et al. Chem. Rev., 2018, 118 (16): 7744-7803
|
| [7] |
Pumera M, Sofer Z. Adv. Mater., 2017, 29 (21): 1605299
|
| [8] |
凌永乐. 化学元素的发现. 3版. 北京: 商务印书馆, 2014: 41-42
|
| [9] |
宋天佑, 徐家宁, 程功臻, 等. 无机化学(下册). 3版. 北京: 高等教育出版社, 2015: 579
|
| [10] |
Rosenblatt G M, Lee P K. J. Chem. Phys., 1986, 49: 2995-3066
|
| [11] |
Gokcen N A. Bull. Alloy Phase Diagr., 1989, 10: 11-22
|
| [12] |
Kalendarev R I, Sazonov A I, Rodionov A N, et al. Mater. Res. Bull., 1984, 19: 11-15
|
| [13] |
Stöhr H. Zeitschrift fur Anorganische und Allgemeine Chemie, 1939, 242: 138-144
|
| [14] |
Greaves G N, Elliott S R, Davis E A. Adv. Phys., 1979, 28: 49-141
|
| [15] |
宣昭林, 戎刘, 李艳杰. 中国地方病防治杂志, 2004, 19 (4): 162-163
|
| [16] |
Wen S P, Zhu X S. Talanta, 2018, 181: 265-270
|
| [17] |
Leal P M, Alonso E V, Guerrero M M L, et al. Talanta, 2018, 184: 251-259
|
| [18] |
Chen S Z, Zhan X L, Lu D B, et al. Anal. Chim. Acta., 2009, 634 (2): 192-196
|
| [19] |
Chen D H, Huang C Z, He M, et al. J. Hazard Mater., 2009, 164 (2/3): 1146-1151
|
| [20] |
Li P, Zhang X Q, Chen Y J, et al. RSC Adv., 2014, 4 (90): 49421-49428
|
| [21] |
Ma J P, Jiang L H, Wu G G, et al. J. Chromatogr. A, 2016, 1466: 12-20
|
| [22] |
Huang C Z, Xie W, Li X, et al. Microchim. Acta., 2011, 173 (1/2): 165-172
|
| [23] |
Ma J P, Lu W H, Chen L X. Curr. Anal. Chem., 2012, 8 (1): 78-90
|
| [24] |
Zounr R A, Tuzen M, Khuhawar M Y. J. Mol. Liq., 2017, 242: 441-446
|
| [25] |
位晨希, 马继平, 吴阁格, 等. 青岛理工大学学报, 2019, 40 (3): 80-87
|
| [26] |
Liu W, Hu J L, Yang H X. Chinese Journal of Analysis Laboratory, 2014, 33 (4): 462-465
|
| [27] |
Jia X Y, Gong D R, Wang J N. Talanta, 2016, 160: 437-443
|
| [28] |
郑雅杰, 崔涛, 彭映林. 中国有色金属学报, 2012, 22 (7): 2103-2108
|
| [29] |
王小平, 周振联. 环境工程, 2003, 21 (5): 46-48
|
| [30] |
欧阳通. 环境科学, 2004, 25 (6): 43-47
|
| [31] |
姜浩, 廖立兵, 王素萍. 地球化学, 2002, 31 (6): 593-601
|
| [32] |
吴水波. 混凝-微滤工艺的饮用水除砷研究. 天津: 天津大学硕士学位论文, 2007
|
| [33] |
樊荣涛, 闫惠珍, 岳银玲. 中国卫生检验, 2005, 15 (9): 1128-1129
|
| [34] |
张斐, 王欣. 现代盐化工, 2019(4): 9-10
|
| [35] |
Kou L Z, Ma Y D, Tan X, et al. J. Phys. Chem. C, 2015, 119 (12): 6918-6922
|
| [36] |
Greenwood N N, Earnshaw A. Chemistry of the Elements 2nd ed. Oxford: Butterworth-Heinemann, 1997: 551
|
| [37] |
Mardanya S, Thakur V K, Bhowmick S, et al. Phys. Rev. B, 2016, 94 (3): 035423
|
| [38] |
一机部仪表材料研究所技术情报室. 仪表材料, 1971(4): 16-23
|
| [39] |
侯汉娜, 陈甜甜. 环境保护科学, 2014, 40 (6): 42-46
|
| [40] |
石黑三郎. 电器学会杂志, 1970, 90 (4): 561-565
|
| [41] |
岸田元良. 化学工业, 1966(8): 769-774
|
| [42] |
姚元芝. 知识介绍, 1999(4): 24-25
|
| [43] |
高胜利, 杨奇. 化学元素新论. 北京: 科学出版社, 2019: 473-474
|
| [44] |
胡德元. 改性活性炭吸附去除氟硅酸中砷的研究. 贵阳: 贵州大学硕士学位论文, 2008
|
| [45] |
Zhao L X, Xu Q N, Wang X M, et al. Phys. Rev. B, 2017, 95 (11):115119
|
| [46] |
Hu Y, Qi Z H, Lu J Y, et al. Chem. Mater., 2019, 31 (12): 4524-4535
|
| [47] |
Sturala J, Sofer Z, Pumera M. Npg. Asia. Mater., 2019, 11: 42
|
| [48] |
Antonatos N, Mazanek V, Lazar P, et al. Nanoscale Adv., 2020, 2 (3): 1282-1289
|
| [49] |
Seidl M, Balazs G, Scheer M. Chem. Rev., 2019, 119 (14): 8406-8434
|
| [50] |
Chen Y B, Chen C Y, Kealhofer R, et al. Adv. Mater., 2018, 30 (30):1800754
|
| [51] |
Pušelj M, Ban Z, Grdenic D. Zeitschrift fur Anorganische und Allgemeine Chemie, 1977, 437: 289-292
|
| [52] |
Osters O, Nilges T, Bachhuber F, et al. Angew Chem. Int. Edit., 2012, 51 (12): 2994-2997
|
| [53] |
Smith P M, Leadbetter A J, Apling A J. Philos.Mag., 1975, 31: 57-64
|
| [54] |
Krebs H, Holz W, Worms K H. Chem. Ber., 1957, 90: 1031-1037
|
| [55] |
Krebs H. Angew. Chem. Int. Edit., 1953, 65: 293-299
|
| [56] |
Antonatos N, Luxa J, Sturala J, et al. Nanoscale, 2020, 12 (9): 5397-5401
|
| [57] |
Clark A H. Mineral. Mag., 1970, 37: 2
|
| [58] |
Li R P, Han N N, Cheng Y C, et al. J. Phys-Condens. Mat., 2019, 31 (50): 505501
|
| [59] |
Gao C F, Li R P, Zhong M Z, et al. J. Phys. Chem. Lett., 2020, 11 (1): 93-98
|
| [60] |
Kandemir A, Iyikanat F, Sahin H. J. Mater. Chem. C, 2019, 7 (5): 1228-1236
|
| [61] |
Zhong M Z, Xia Q L, Pan L F, et al. Adv. Funct. Mater., 2018, 28 (43): 1802581
|
| [62] |
Shen S Y, Gan Y, Xue X X, et al. Appl. Phys. Express, 2019, 12 (7): 075502
|
| [63] |
Akgenc B. J. Mater. Sci., 2019, 54 (13): 9543-9552
|
| [64] |
Schwarzmaier C, Sierka M, Scheer M. Angew. Chem.Int. Edit., 2013, 52 (3): 858-861
|
| [65] |
Schwarzmaier C, Schindler A, Heindl C, et al. Angew. Chem. Int. Edit., 2013, 52 (41): 10896-10899
|
| [66] |
Seitz A E, Hippauf F, Kremer W, et al. Nat. Commun., 2018, 9: 361
|
| [67] |
Morino Y, Ukaji T, Ito T. B. Chem. Soc. Jpn., 1966, 39: 64-71
|
| [68] |
Bettendorff A. Justus Liebigs Annalen der Chemie, 1867, 144: 110-114
|
| [69] |
Scherer O J, Sitzmann H, Wolmershäuser G. J. Organomet. Chem., 1986, 309: 77-86
|
| [70] |
Tan R P, Comerlato N M, Powell D R, et al. Angew. Chem. Int. Edit., 1992, 31 (9): 1217-1218
|
| [71] |
Seitz A E, Eckhardt M, Sen S S, et al. Angew. Chem. Int. Edit., 2017, 56 (23): 6655-6659
|
| [72] |
Heinl S, Balazs G, Stauber A, et al. Angew. Chem. Int. Edit., 2016, 55 (50): 15524-15527
|
| [73] |
Curley J J, Piro N A, Cummins C C. Inorg. Chem., 2009, 48 (20): 9599-9601
|
| [74] |
Schwarzmaier C, Noor A, Glatz G, et al. Angew. Chem. Int. Edit., 2011, 50 (32): 7283-7286
|
| [75] |
Scherer O J, Blath C, Wolmershäuser G. J. Organomet. Chem., 1990, 387: C21-C24
|
| [76] |
Schwarzmaier C, Timoshkin A Y, Balazs G, et al. Angew. Chem. Int. Edit., 2014, 53 (34): 9077-9081
|
| [77] |
Heinl S, Timoshkin A Y, Muller J, et al. Chem. Commun., 2018, 54 (18): 2244-2247
|
| [78] |
Di Vaira M, Midollini S, Sacconi L. J. Am. Chem. Soc., 1979, 101: 1757-1763
|
| [79] |
Scherer O J, Pfeiffer K, Heckmann G, et al. J. Organomet. Chem., 1992, 425: 141-149
|
| [80] |
Grassl C, Bodensteiner M, Zabel M, et al. Chem. Sci., 2015, 6 (2): 1379-1382
|
| [81] |
Scherer O J, Braun J, Wolmershäuser G. Chem. Ber., 1990, 123: 471-475
|
| [82] |
Scherer O J, Braun J, Walther P, et al. Chem. Ber., 1992, 125: 2661-2665
|
| [83] |
Spitzer F, Sierka M, Latronico M, et al. Angew. Chem. Int. Edit., 2015, 54 (14): 4392-4396
|
| [84] |
Schmidt M, Seitz A E, Eckhardt M, et al. J. Am. Chem. Soc., 2017, 139 (40): 13981-13984
|
| [85] |
Turbervill R S P, Goicoechea J M. Chem. Commun., 2012, 48 (49): 6100-6102
|
| [86] |
Hinz A, Goicoechea J M. Angew. Chem. Int. Edit., 2016, 55 (50): 15515-15519
|
| [87] |
Karttunen A J, Tanskanen J T, Linnolahti M, et al. J. Phys. Chem. C, 2009, 113 (28): 12220-12224
|
| [88] |
Hart M, Chen J, Michaelides A, et al. Angew. Chem. Int. Edit., 2018, 57 (36): 11649-11653
|
| [89] |
Zhang S L, Yan Z, Li Y F, et al. Angew. Chem. Int. Edit., 2015, 54 (10): 3112-3115
|
| [90] |
Luo K, Chen S Y, Duan C G. Sci China. Phys. Mech., 2015, 58 (8): 087301
|
| [91] |
Zhang B F, Zhang H, Lin J H, et al. Phys. Chem. Chem. Phys., 2018, 20 (48): 30257-30266
|
| [92] |
Li P, Luo W D. Sci. Rep-Uk, 2016, 6: 25423
|
| [93] |
Kong X R, Li L Y, Leenaerts O, et al. Phys. Rev. B, 2017, 96 (3): 035123
|
| [94] |
Jamdagni P, Thakur A, Kumar A, et al. Phys. Chem. Chem. Phys., 2018, 20 (47): 29939-29950
|
| [95] |
Baruah T, Pederson M R, Zope R R, et al. Chem.Phys. Lett., 2004, 387: 476-480
|
| [96] |
Karttunen A J, Linnolahti M, Pakkanen T A. Chemphyschem, 2007, 8 (16): 2373-2378
|
| [97] |
Karttunen A J, Linnolahti M, Pakkanen T A. Theor. Chem. Acc., 2011, 129 (3-5): 413-422
|
|
|
|